GM, Non-GM Comparisons Could Ease Consumer Concerns

GM, Non-GM Comparisons Could Ease Consumer Concerns

New research may provide stepping stone to identifying desired traits in parent plants rather than GMO offspring, Cornell researcher says

Consumers want to know: Does genetic manipulation causes unintended changes in food quality and composition? Are genetically modified foods less nutritious than their non-GM counterparts, or different in unknown ways?

Despite cultivation and testing of GM foods, questions linger in consumers' minds, and a new study demonstrates a potentially more powerful approach to answering them.

In research led by Owen Hoekenga, a Cornell University adjunct assistant professor, scientists extracted roughly 1,000 biochemicals, or "metabolites," from GM tomatoes bred to delay ripening.

New research may provide stepping stone to identifying desired traits in parent plants rather than GMO offspring

The researchers then compared this "metabolic profile" from the GM tomatoes to the profile of its non-GM variety, finding no significant differences overall.

Related: Study: Adoption of GM Crops Has Environmental, Cost Benefits

Although the GM tomato was distinct from its parent, its metabolic profile still fell within the "normal" range of biochemical diversity exhibited by the larger group of varieties, even though the biochemicals related to fruit ripening showed a significant difference.

The finding suggests little or no accidental biochemical change due to genetic modification in this case, as well as a "useful way to address consumer concerns about unintended effects" in general, Hoekenga says.

Hoekenga says the FDA already requires developers of GM crops to compare a handful of key nutritional compounds in GM varieties relative to their non-GM parents. The process is designed to catch instances where genetic manipulation may have affected nutritional quality, for example.

But comparing a GM variety to diverse cultivars can also help scientists and consumers put into context any biochemical changes that are observed.

~~~PAGE_BREAK_HERE~~~

"We accept that there isn't just one kind of tomato at the farmer's market. We look for diverse food experiences," Hoekenga says. "So we think that establishing the range of acceptable metabolic variability [in food] can be useful for examining GM varieties."

A stepping stone to additional research
The process was expensive, and the chemistry methods can't yet be used in official safety assessments, Hoekenga acknowledges. Making statistical comparisons of metabolic "fingerprints" is no easy task.

But the techniques don't apply only to tomato. "The method can be applied to any plant or crop," Hoekenga says. "We've made something fundamentally useful that anyone can use and improve on."

When crossing parent plants, for example, breeders often like to track the genes underlying their trait of interest, such as resistance to a pathogen. That's because pinpointing offspring that carry the right genes is often faster and easier than examining plants for the trait itself.

Related: ERS Report Recaps 15 Years of GMOs

But sometimes, so many genes contribute to a single trait that figuring out which genes are involved in the first place becomes onerous. This is where Hoekenga thinks his style of research and analysis might one day help.

"We're trying to describe at the biochemical level what might be responsible for a trait. And from that, you could extract genetic information to use in breeding," he explains.

The study, An Assessment of the Relative Influences of Genetic Background, Functional Diversity at Major Regulatory Genes, and Transgenic Constructs on the Tomato Fruit Metabolome, was published in the March issue of the Crop Science Society of America's Journal, The Plant Genome.

Source: Crop Science Society of America

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish